Sparse-MVRVMs Tree for Fast and Accurate Head Pose Estimation in the Wild
نویسندگان
چکیده
Head pose estimation is an important problem in the field of computer vision and facial analysis. We model the problem of head pose estimation as a regression problem, where the three rotation angles (yaw, pitch, roll) are functions of the face appearance. We make use of that fact and learn the appearance of the face using a tree cascade of sparse MultiVariate Relevance Vector Machines (MVRVM). Our method is fast and suitable for real-time applications as it is not computationally expensive. Our method learns the face appearance to estimate the head rotation angles. We evaluated our approach on two challenging datasets, the YouTube Faces and the Point and Shoot Challenging (PaSC) dataset. We achieved results of head pose estimation (yaw, pitch, roll) with mean error less than 5◦ and with error tolerance less than ±4 on the PaSC dataset. In terms of speed, one prediction takes around 6 milliseconds, which is suitable for real-time applications and also with high frame rate.
منابع مشابه
Model-Free Head Pose Estimation Based on Shape Factorisation and Particle Filtering
Head pose estimation is essential for several applications and is particularly required for head pose-free eye-gaze tracking where estimation of head rotation permits free head movement during tracking. While the literature is broad, the accuracy of recent vision-based head pose estimation methods is contingent upon the availability of training data or accurate initialisation and tracking of sp...
متن کاملReal-Time Head Pose Estimation Using Multi-variate RVM on Faces in the Wild
Various computer vision problems and applications rely on an accurate, fast head pose estimator. We model head pose estimation as a regression problem. We show that it is possible to use the appearance of the facial image as a feature which depicts the pose variations. We use a parametrized Multi-Variate Relevance Vector Machine (MVRVM) to learn the three rotation angles of the face (yaw, pitch...
متن کاملCamera Pose Estimation in Unknown Environments using a Sequence of Wide-Baseline Monocular Images
In this paper, a feature-based technique for the camera pose estimation in a sequence of wide-baseline images has been proposed. Camera pose estimation is an important issue in many computer vision and robotics applications, such as, augmented reality and visual SLAM. The proposed method can track captured images taken by hand-held camera in room-sized workspaces with maximum scene depth of 3-4...
متن کاملFast Reconstruction of SAR Images with Phase Error Using Sparse Representation
In the past years, a number of algorithms have been introduced for synthesis aperture radar (SAR) imaging. However, they all suffer from the same problem: The data size to process is considerably large. In recent years, compressive sensing and sparse representation of the signal in SAR has gained a significant research interest. This method offers the advantage of reducing the sampling rate, bu...
متن کاملImproved Channel Estimation for DVB-T2 Systems by Utilizing Side Information on OFDM Sparse Channel Estimation
The second generation of digital video broadcasting (DVB-T2) standard utilizes orthogonal frequency division multiplexing (OFDM) system to reduce and to compensate the channel effects by utilizing its estimation. Since wireless channels are inherently sparse, it is possible to utilize sparse representation (SR) methods to estimate the channel. In addition to sparsity feature of the channel, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017